# ALCOA: innovation

With it's ties with the *Alcoa Technical Center*, Alcoa Innovation is supporting Quebec's industries in their projects using aluminum.





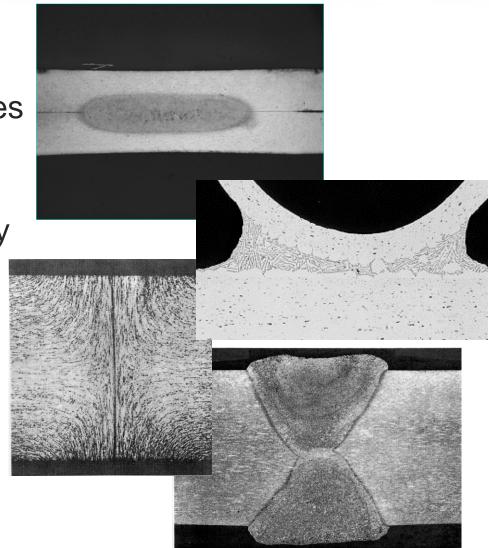






Advancing each generation.

#### **Common Joining Methods Used in Aluminum Structures**


D.J. Spinella – Alcoa Technical Center

November 20, 2013

#### Common Joining Methods Used for Aluminum Structures Agenda

### Introduction

- Trends in Aluminum Structures
  - Design
  - Manufacturing Approaches
- Aluminum Joining Technology
  - Joining Technologies
  - Fusion-Based
  - Solid State
  - Mechanical / Adhesive
- Field Examples
- Questions





#### Alcoa Technical Center




- The Alcoa Technical Center is the world's largest light metals research and development center with a full range of lab capabilities, from bench-scale to full production-scale equipment.
- ATC employs approximately 600 scientists, engineers, technicians, and support personnel responsible for innovating the next generation of Alcoa products and services. Located on a 127-acre campus with an additional 2,019 acres of rolling countryside, it's Alcoa's largest research, development, and applied engineering laboratory. The facility has a diverse, multi-lingual workforce holding more than 98 doctorate and 166 master's degrees.



#### **Product Manufacturing Technologies**

- Manufacturing process development & technical support in forming, joining, machining, assembly, and prototyping
- Prototype manufacturing for Alcoa technology including demonstration and test articles
- Lifecycle support for multi-product & multi-material solutions
- Serves a broad array of markets
  - ≻Aerospace
  - ≻Automotive
  - ➤Commercial Transportation
  - ➢Rail and Marine
  - ≻Defense
  - ≻Consumer Electronics
  - ➢Oil and Gas





#### Product Manufacturing – Joining Technologies

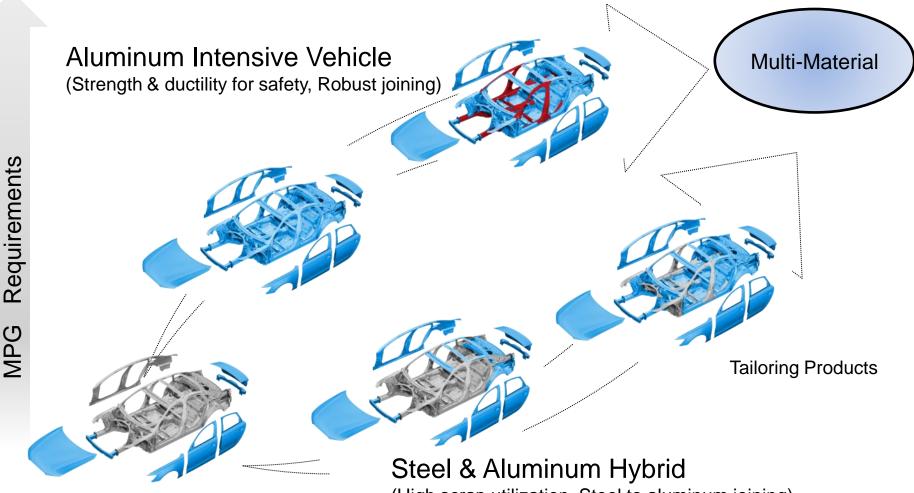
Develop and apply advanced joining technologies

- Arc and Fusion Welding
- Resistance Welding
- Solid-State Welding
- Mechanical Joining

**Robotic Resistance Welding** 

Adhesive Bonding

**Autoclave Operations** 


**Adhesive Bonding** 



**Friction Stir Welding** 

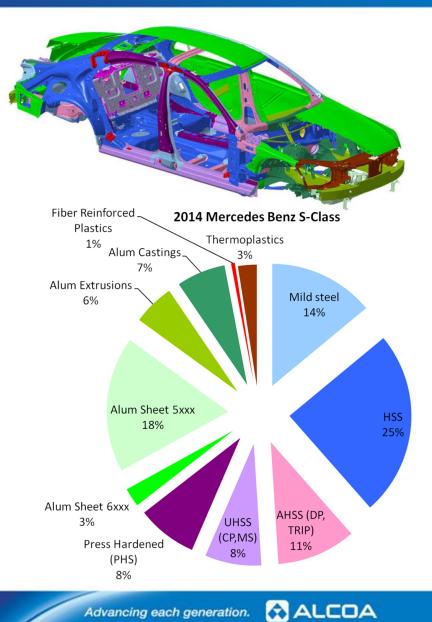
Gas Metal

**Arc Welding** 

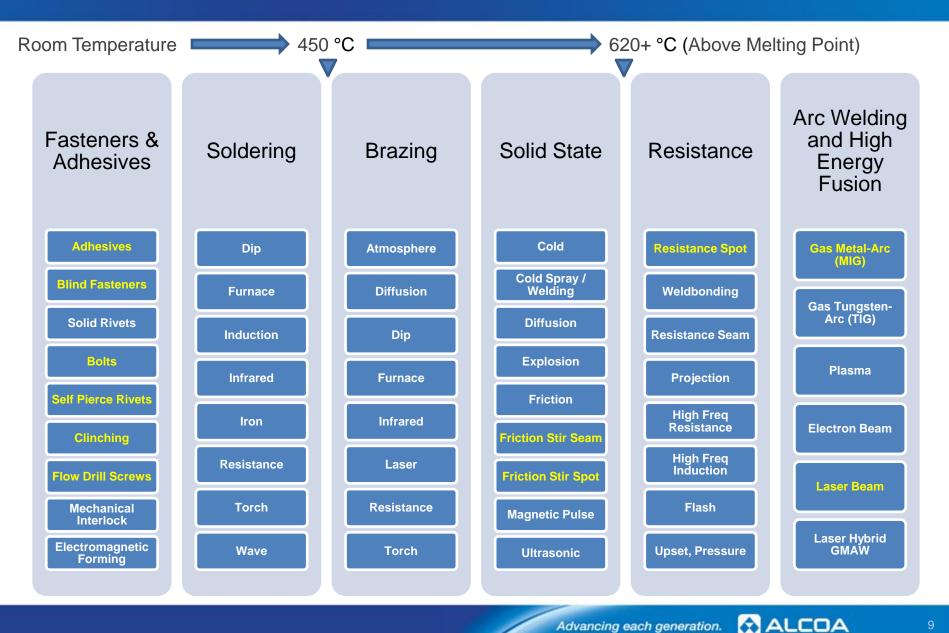


**Aluminum Closures** (Increased formability for design/styling) (High scrap utilization, Steel to aluminum joining)



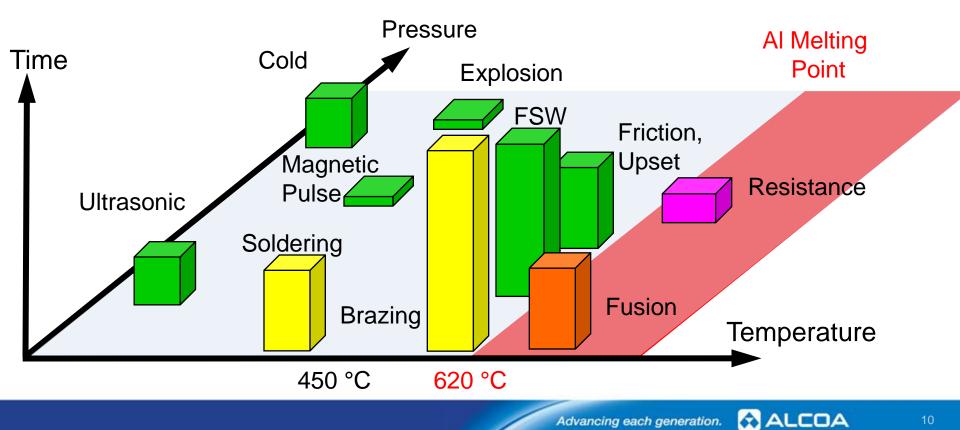

#### 2014 Mercedes-Benz S-Class




Aluminum roof, doors, hood, decklid, rear package shelf, frontend, front subframe

Saved 50 kg using aluminum over the steel body

| 2014 S-Class BIW Weight (kg) | 362   |
|------------------------------|-------|
| Front Doors (2) (Kg)         | 21.8  |
| Rear Doors (2) (Kg)          | 21.2  |
| Hood (Kg)                    | 12.7  |
| Liftgate/Decklid (Kg)        | 6.7   |
| Front Fenders (Kg)           | 3.3   |
| Front Bumper/Other (kg)      | 7     |
| Total (kg)                   | 434.7 |




#### **Aluminum Joining Technologies**

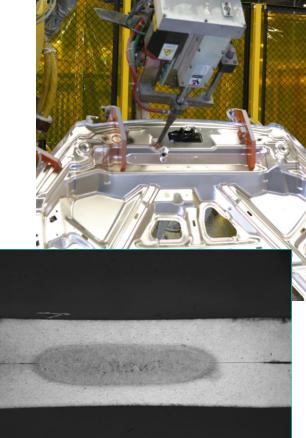


#### **Comparison of Various Joining Processes**

- Many welding processes don't reach the melting point of the material
- Alloy of parent, heat & pressure profile, and filler metal determines
  - Mechanical Properties (tensile, yield, elongation, fatigue)
  - Physical Properties (corrosion, electrical resistivity, color match



#### Competing Technologies vs. Robotic Steel RSW


|                    | Mechanical<br>Performance | Consumable Cost | Flexibility to<br>Gauge Changes | Gun Accessibility | Aluminum to Steel<br>Joining | High Strength<br>Materials | Surface<br>Pretreatments | Adhesive<br>Compatible | Process Speed | Precision<br>Alignment |
|--------------------|---------------------------|-----------------|---------------------------------|-------------------|------------------------------|----------------------------|--------------------------|------------------------|---------------|------------------------|
| Aluminum RSW       | Lower                     | Low             | Yes                             | 2 Sided           | No                           | Special<br>Practices       | No                       | Yes                    | Fast          | Low                    |
| Self Pierce Rivet  | Good                      | Yes             | Limited                         | 2 Sided           | Yes                          | Special<br>Practices       | No                       | Yes                    | Fast          | Low                    |
| EJOT, Flowdrill    | Good                      | Yes             | Yes                             | 1 Sided           | Yes - w/<br>pilot            | Yes                        | No                       | Yes                    | Mod           | Mod                    |
| Mechanical Clinch  | Lower                     | Yes             | Limited                         | 2 Sided           | Yes                          | Special<br>Practices       | No                       | Yes                    | Fast          | Low                    |
| Adhesives          | Good                      | Yes             | Yes                             | 1 Sided           | Yes                          | Yes                        | Yes                      | Yes                    | Fast          | Mod                    |
| Blind Fastener     | Good                      | Yes             | Yes                             | 1 Sided           | Yes                          | Yes                        | No                       | Yes                    | Mod           | Mod                    |
| Ultrasonic         | Lower                     | Low             | Limited                         | 2 Sided           | Limited                      | Yes                        | No                       | Limited                | Mod           | Mod                    |
| Friction Stir Spot | Lower                     | Low             | Limited                         | 2 Sided           | Yes                          | Yes                        | No                       | Limited                | Mod           | High                   |
|                    | Improv                    | rement          | Base                            | eline             | Lov                          | wer                        | Lim                      | ited                   |               |                        |



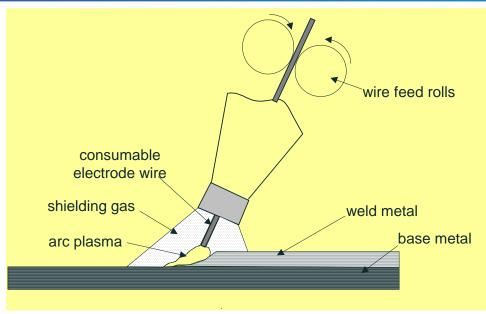
#### **Resistance Spot Welding - RSW**

- Aluminum sheet is spot welded in several high volume closure applications
- Structural applications have been limited to only a few niche vehicles
- Issues versus steel RSW
  - 1. Process consistency (it's all about surface)
  - Requires higher capacity welding transformers (2.5X weld current)
  - 3. Questions on process robustness to production conditions (electrode angularity, gaps, etc.)
  - 4. QA and NDE procedures are not validated
  - 5. Lubricant and adhesive impact on weld quality
- Advantages
  - Equipment designed to weld aluminum can easily process steel
  - Leverages steel RSW infrastructure & logistics

# Al Closure Panel Line



ALCOA


#### Gas Metal Arc Welding - GMAW

#### **Advantages**

- Manual or automatic
- Suitable for welding most joint types and positions
- Applicable to joining various thicknesses (≥1.5 mm) & combinations
- Travel speeds 0.5 to1.5 m/min

#### Disadvantages

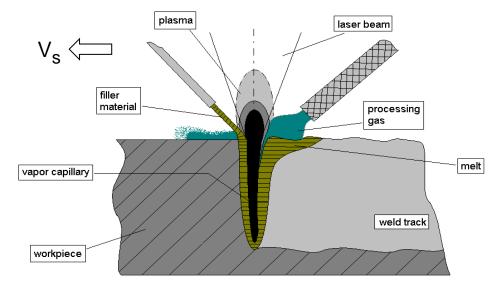
- Sensitive to variations in joint gaps & lateral edges relative to welding torch
- More prone to formation of weld porosity than GTAW
- Not as "fine" to control as GTAW
- May require parts to be cleaned of lubricants and contaminants

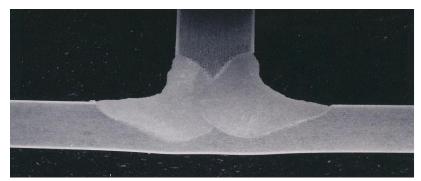




www.lincolnelectric.com




## Laser Beam Welding – Advantages and Disadvantages


#### Advantages

- Higher welding speeds of travel on thin sections
- High penetration/width ratio of welc
- Precise heat input yields narrower weld beads, heat-affected zones & distortion
- Lap-Penetration &Square-Butt joint
- Continuous or stitch welding mode:
- Robot or gantry systems
- Beam-sharing between stations

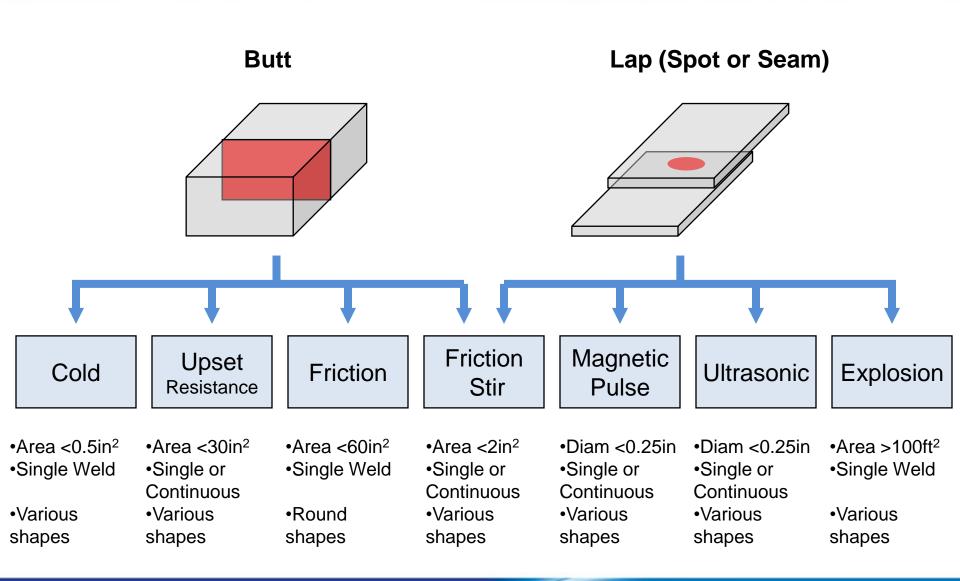
#### Disadvantages

- Certain alloys will require a filler alloy (hybrid GMAW or cold feed)
- Joint fitup and precision
- Capital costs





#### Laser Beam Fillet Weld



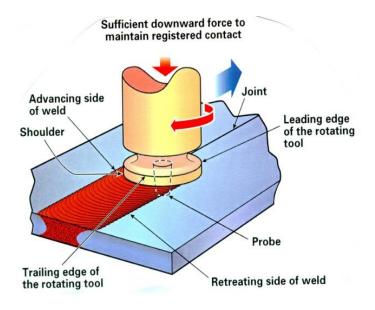

#### Solid-State Welding – Key Characteristics

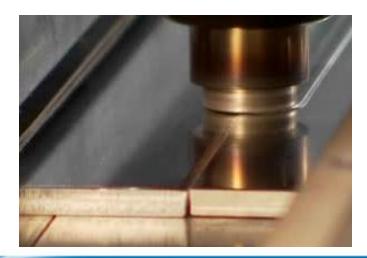
- Surface oxides must be removed / displaced / dispersed so that parent metals come into direct contact
- Combinations of heat, pressure & time
- Deformation may be present
  - Plasticized materials displace oxides, pressure allows intimate contact resulting in metallurgical bonding
- Temperatures below material's melting point
  - Allows dissimilar material combinations (AL to ST, AL to CU) since intermetallics are not generated
  - If temperatures above melting, molten metals and intermetallics must be expelled for good properties.



#### Solid-State Joint Configurations

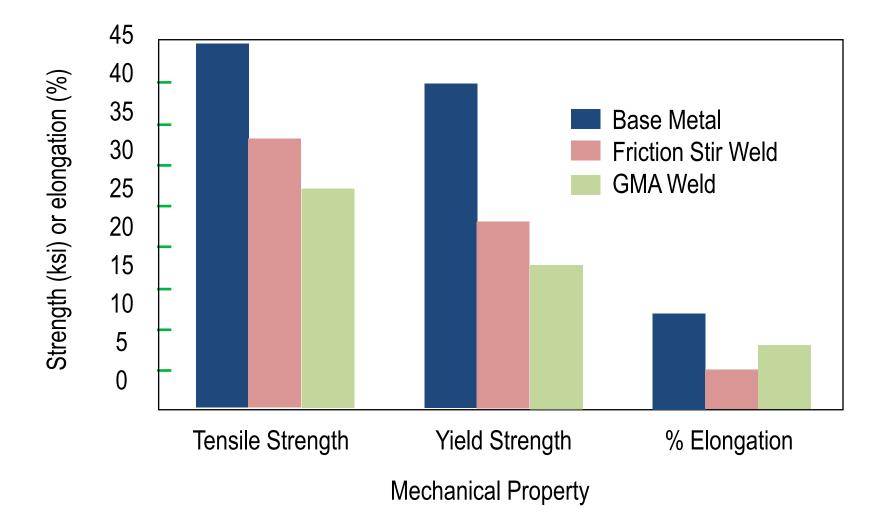



#### **Friction Stir Welding Process**


#### Advantages

- Good mechanical properties
- Minimal weld induced distortion
- Full or partial penetration from one side
- Square butt & lap-penetration type joints
- High quality welds involving fewer repairs and rejects
- No filler alloy addition & shielding gas
- Very simple to operate and maintain
- Welds aluminum alloys normally considered non-fusion weldable (e.g., 7050, 7075 and 8090)

#### Disadvantages


- Requires good fitup and clamping systems
- Supply chain / integrators limited



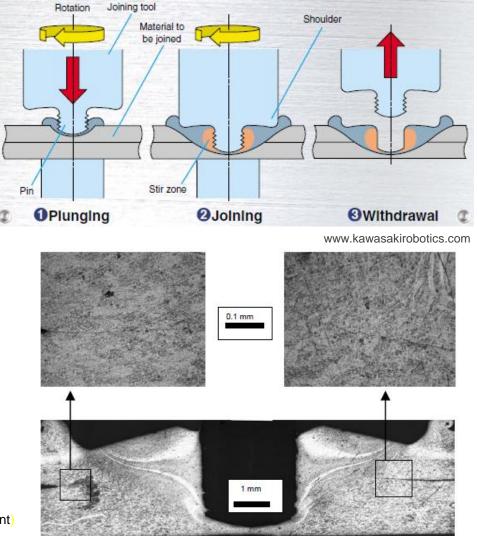




#### FSW versus GMAW Property Comparison: 6061-T6

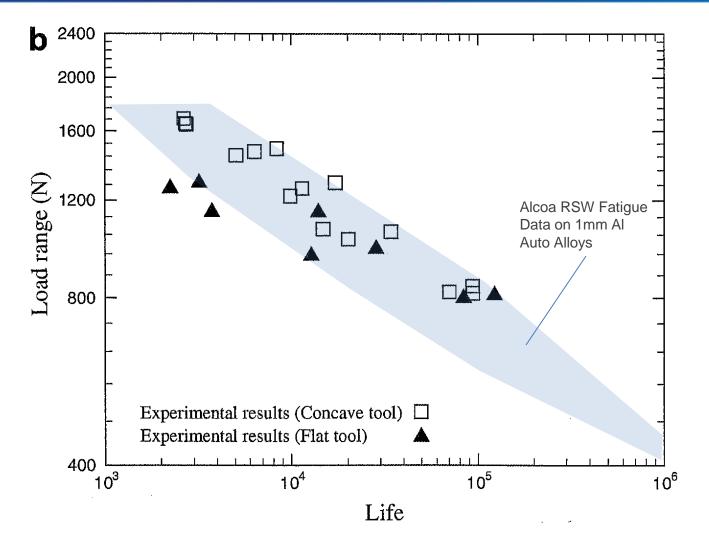


#### Friction Stir Spot Welding


#### Advantages

- Replaces RSW and mechanical fastening joints
- Minimal weld induced distortion
- Stitch and refill variants
- Low consumable & infrastructure costs (low electricity, no chilling water)
- Welds aluminum alloys normally considered non-fusion weldable (e.g., 7050, 7075 and 8090)

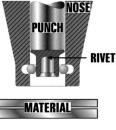
#### Disadvantages


- Cycle time for thick stackups
- Switching between different stackups and material combinations

Arul et. al., "Effects of Surface Treatment (Lubricant) on Spot Friction Welded Joints Made of 6111-T4 Aluminum Sheets", SAE Paper 2007-01-1706






#### Friction Spot Welding Fatigue Performance – 0.94mm 6111-T4



Lin et.al., "Failure modes and fatigue life estimations of spot friction welds in lap-shear specimens of aluminum 6111-T4. Part 2: Welds made by a flat tool", International Journal of Fatigue, Vol. 30 (2008) 90-105



#### Mechanical Fastening: SPR – Self-Piercing Rivet







Starting condition

Material clamped

#### Factors for SPR Joint Design

- Total Stack-Up Thickness
  - Determines rivet length
- Flange or Overlap Width
- Edge Distance
- Tool Clearance
- Materials being Joined
  - Aluminum
  - Steel
  - Multi-Materials (Hybrids)



**Rivet insertion** 



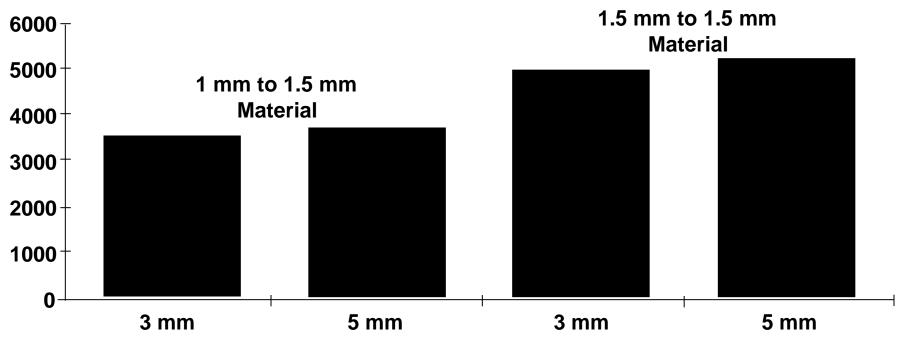




Tool retracted

#### Stack-up / Orientation

- Softer (top) to Harder (bottom)
- Thick to thin, thin should be no less than 1/3t of the thicker


#### **Rivet Diameter**

- 3 mm or 5 mm
  - Joint strength
  - Robustness of joint
  - Access

#### **Rivet Length**

- 3 mm rivet, 1.5 3.0 mm > than stack
- 5 mm rivet, 2.0 4.0 mm > than stack

6111-T4 Alloy



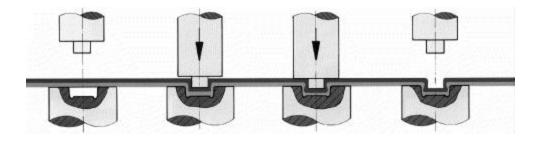
**Rivet Diameter** 

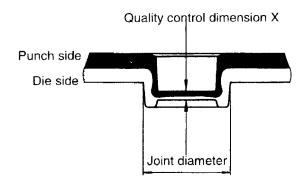


#### Mechanical Fastening: EJOT® Flow Drill Screws



- 1. FLOW DRILLING SCREW (FDS) is applied to surface with medium thrust and spindle rotation.
- 2. As friction and heat increases, the surface plasticizes and begins to "flow".
- 3. Material begins to form the extended threading are behind the application.
- 4. As the flow phase ends the 'thread rolling' phase begins with lower RPM on the spindle.
- 5. The screw now begins to act like a normal fastener and is driven to a torque.
- 6. The fastener is seated as it would be in any normal toque strategy. As the materials cool it also contacts around the threads for added joint integrity.


Weber Screw Driving Systems




23

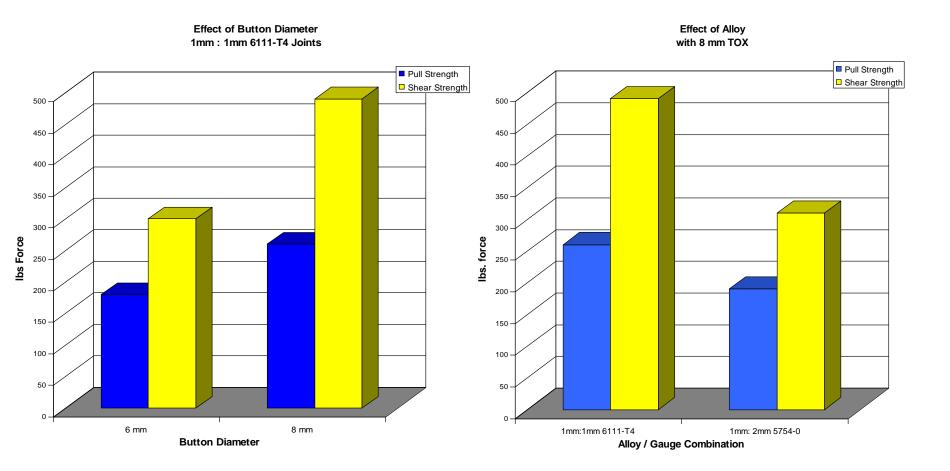
#### Mechanical Fastening: TOX Mechanical Clinch

#### **TOX Clinching Process**





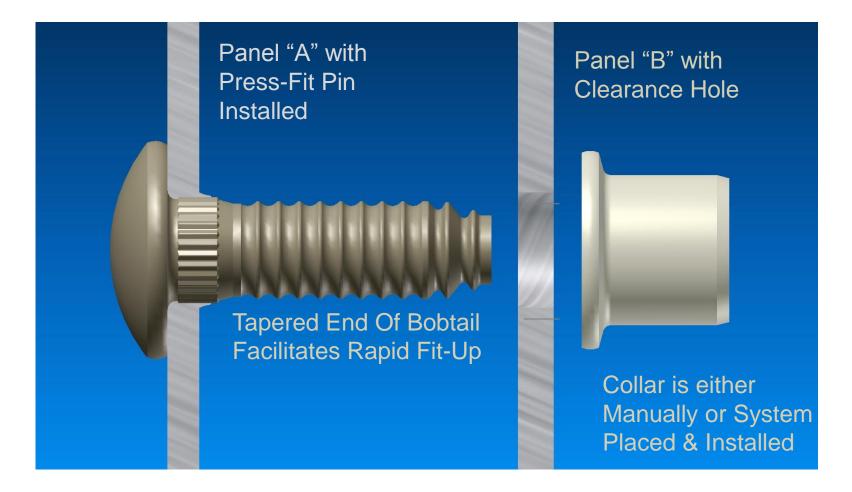
#### Material Stack-up / Orientation


- Preferable to have thicker or harder material on punch side
- Minimum single sheet thickness of 0.3 mm (depend on TOX diameter)
- Maximum combine thickness is 8 mm (depend on TOX diameter)
- Total stack-up of 2 to 4 layers possible

#### TOX diameters

Available in 3, 4, 5, 6, 8, 10, and 12 mm button diameters

#### Mechanical Fastening: TOX Mechanical Clinch


**TOX Joint Strength** 



# **Bobtail Clinch Stud**







For high strength or dissimilar material joining to replace RSW, SPR & FDS in 2,4, & 6mm stack-ups.

http://www.afsglobal.net/

CONFIDENTIAL – PROPERTY OF ALCOA FASTENING SYSTEMS



# **Bobtail Lock Bolt Features and Benefits**





| Features                                                      | Benefits                                                                                   |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Vibration Proof                                               | <ul><li>Maintenance free</li><li>Longer equipment uptime</li></ul>                         |
| Ergonomic installation                                        | <ul> <li>Fast fit-up</li> <li>No tooling vibration or shock load</li> <li>Quiet</li> </ul> |
| <ul> <li>Shallow, low notch factor<br/>bolt thread</li> </ul> | <ul><li>High fatigue strength</li><li>Absorbs high spike loads</li></ul>                   |
| <ul> <li>Grade 8 and Class 10.9 strength</li> </ul>           | <ul> <li>Easy upgrade from conventional<br/>nuts and bolts</li> </ul>                      |
| Directly Tensioned without Torque                             | <ul> <li>Delivers high and precise clamp<br/>load, ± 6% max variation</li> </ul>           |

a The

http://www.afsglobal.net/

CONFIDENTIAL – PROPERTY OF ALCOA FASTENING SYSTEMS



# Huck 360<sup>™</sup> Performance Objectives





- Develop a very high strength bolting system for farm and military equipment
- Fast installation and removal with conventional tools
- Must stay tight under severe vibration loading
- Must have superior fatigue strength to hold up against high spike loads



http://www.afsglobal.net/



# Huck 360<sup>™</sup> Features and Benefits



| A | LCO | A |
|---|-----|---|

| Features                                 | Benefits                                                                                                    |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Vibration Proof                          | <ul><li>Maintenance free</li><li>Longer equipment uptime</li></ul>                                          |
| Free running thread                      | <ul> <li>Fast fit-up</li> <li>No coating damage</li> <li>Easy removal</li> <li>Field Serviceable</li> </ul> |
| Shallow, low notch factor<br>bolt thread | <ul><li>High fatigue strength</li><li>Absorbs high spike loads</li></ul>                                    |
| Grade 8 and Class 10.9 strength          | <ul> <li>Easy upgrade from conventional<br/>nuts and bolts</li> </ul>                                       |
| Removable and reusable                   | <ul><li>Installed with Standard Tooling</li><li>Field Serviceability</li></ul>                              |

a temp

http://www.afsglobal.net/

CONFIDENTIAL – PROPERTY OF ALCOA FASTENING SYSTEMS



#### Huck 360<sup>™</sup> Bolt Comparison

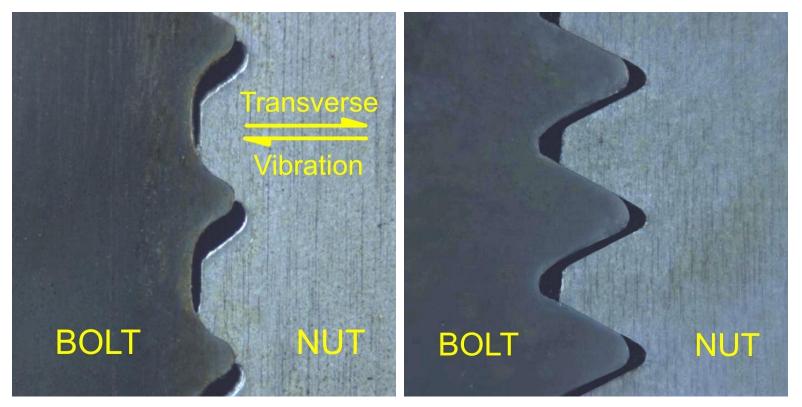
Alcoa Fastening Systems



|                      | Standard<br>Bolt | Traditional<br>Lock Bolt | 2008<br>Bobtail® | 2009<br>Huck 360™ |
|----------------------|------------------|--------------------------|------------------|-------------------|
| Features             |                  |                          |                  |                   |
| Clamp Load           | High             | High                     | High             | High              |
| Clamp Variation      | ±30%             | ±6%                      | ±6%              | ±20%              |
| Removable            | Yes              | Semi-permanent           | Semi-permanent   | Yes               |
| 16 mm Tool Weight    | < 10 lbs.        | 20 lbs.                  | < 10 lbs.        | < 10 lbs.         |
| Vibration Resistance | Low              | High                     | High             | High              |

a Thi

http://www.afsglobal.net/



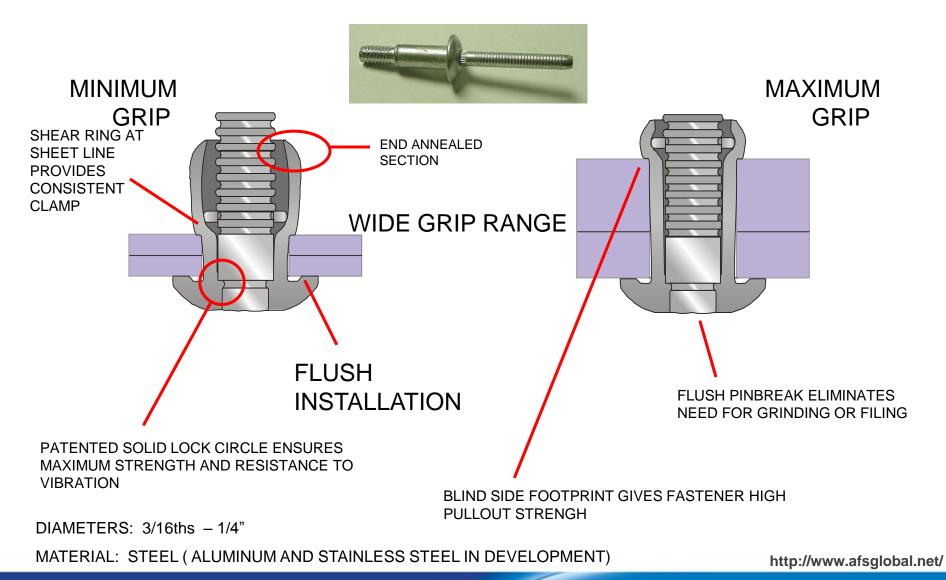





#### Huck 360™

#### **Conventional Thread**




Thread Flanks are Locked. Nut cannot move relative to bolt. Thread Flanks can slide. Nut can move relative to bolt.

http://www.afsglobal.net/



# Production Blind Riveting Technology for Truck & Trailer - HUCK-LOK





CONFIDENTIAL – PROPERTY OF ALCOA FASTENING SYSTEMS


Advancing each generation.

ALCOA

# Automated Drilling & Riveting for Blind Applications

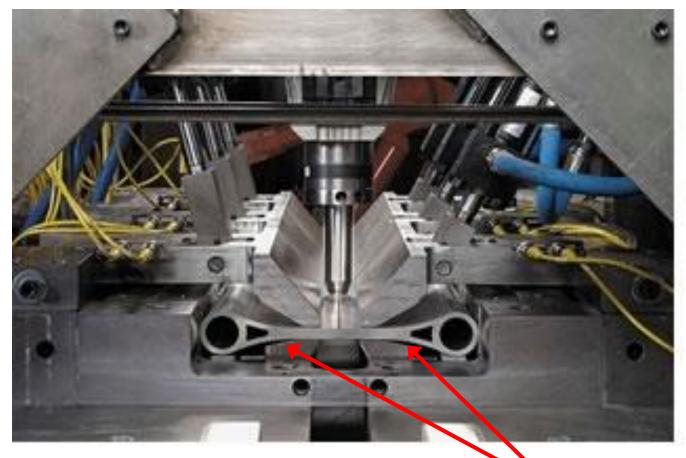






http://www.afsglobal.net/

CONFIDENTIAL – PROPERTY OF ALCOA FASTENING SYSTEMS


Advancing each generation.



**Aluminum Joining Applications** 



#### Friction Stir Welded Suspension Link for Lincoln Town Car



6061 Extrusions



#### Jaguar Land Rover Aluminum Vehicles



2013 Jaguar XJ Aluminum since 2003

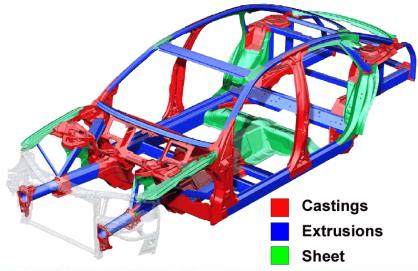


#### 2013 Range Rover



2013 Jaguar XK Aluminum since 2006




2013 Jaguar F Type



#### 2<sup>nd</sup> Generation Audi A8


- Reduced components by 40% and assembly costs
- Major parts consolidation attributed to large castings
- More interior space than its predecessor
- Faster than its predecessor
- Joining Technologies
  - Laser-hybrid welding
  - -65 feet of laser welding
  - -SPR





#### Audi A2





"Aluminum Now", Aluminum Association, November/December 2001

• 30 meters of laser welds



Aluminum Association's Aluminum Welding Seminar, 2003



#### Ferrari 360 Modena



- AL sheet, extrusions, and castings
- SPR, arc-welding





#### **Plymouth Prowler**





- AL sheet, extrusions, and castings
- SPR, arc-welding



#### Automotive Applications – Closures and Structures

#### **Resistance Spot Welding**



www.ford.com Ford Explorer AL hood and fenders



Nissan Altima AL hood and decklid

#### **Self Pierce Riveting**



<u>Plymouth Prowler</u> SPR body and panels

#### **Friction Stir Spot Weld**





# Huck 360<sup>™</sup>s are being used in a wide range of applications







**Track Diamonds** 



Mining – Spring Base Plate Discharge Chute Liner



The states

**Temporary Frame connection** 



**RV Frames** 

CONFIDENTIAL - PROPERTY OF ALCOA FASTENING SYSTEMS



# More Huck 360<sup>™</sup> Applications







**Pig Dehairer – Scraper Paddles** 





Street Sweeper – Shaker Screen



#### **Truck Frame**

#### **Appliance connections**

CONFIDENTIAL – PROPERTY OF ALCOA FASTENING SYSTEMS



#### **Solar Applications**







**PV Module Attachment** 

I-Beam to Frame Attachment

a Thi





The presenter would like to thank the following individuals for supplying information and slides for this presentation: Bob Corbett of Alcoa Fastening Systems; Dan Bergstrom, Russ Long, and Kyle Williams of the Alcoa Technical Center



